[1] N. Van Tan, L. H. Lam, D. M. Quan, N. H. Hieu, and L. K. Hung, “A Thorough Overview of Hierarchical Structure of Microgrid Systems,” Proc. 2018 4th Int. Conf. Green Technol. Sustain. Dev. GTSD 2018, pp. 710–715, 2018.
[2] F. Mumtaz, M. H. Syed, M. Al Hosani, and H. H. Zeineldin, “A Novel Approach to Solve Power Flow for Islanded Microgrids Using Modified Newton Raphson with Droop Control of DG,” IEEE Trans. Sustain. Energy, vol. 7, no. 2, pp. 493–503, 2016.
[3] C. Li, S. K. Chaudhary, M. Savaghebi, J. C. Vasquez, and J. M. Guerrero, “Power flow analysis for low-voltage ac and dc microgrids considering droop control and virtual impedance,” IEEE Trans. Smart Grid, vol. 8, no. 6, pp. 2754–2764, 2017.
[4] D. Microgrids, M. A. Allam, S. Member, A. A. Hamad, and N. Raphson, “A Generic Modeling and Power-Flow Analysis Approach for Isochronous and Droop-Controlled Microgrids,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5657–5670, 2018.
[5] R. A. Jabr and B. C. Pal, “Compensation in Complex Variables for Microgrid Power Flow,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3207–3209, 2018.
[6] F. Feng and P. Zhang, “Enhanced Microgrid Power Flow Incorporating Hierarchical Control,” IEEE Trans. Power Syst., vol. 35, no. 3, pp. 2463–2466, 2020.
[7] D. Microgrids, “Direct Backward/Forward Sweep Algorithm for Solving Load Power Flows in AC Droop-Regulated Microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2208–2217, 2016.
[8] L. Ren and P. Zhang, “Generalized Microgrid Power Flow,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3911–3913, 2018.
[9] F. Hameed, M. Al Hosani, and H. H. Zeineldin, “A Modified Backward/Forward Sweep Load Flow Method for Islanded Radial Microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 910–918, 2019.
[10] X. Wang, M. Shahidehpour, C. Jiang, W. Tian, Z. Li, and Y. Yao, “Three-Phase Distribution Power Flow Calculation for Loop-Based Microgrids,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3955–3967, 2018.
[11] E. E. Pompodakis, G. C. Kryonidis, and M. C. Alexiadis, “A Comprehensive Load Flow Approach for Grid-Connected and Islanded AC Microgrids,” IEEE Trans. Power Syst., vol. 35, no. 2, pp. 1143–1155, 2020.
[12] F. Li, S. Member, R. Bo, and S. Member, “DCOPF-Based LMP Simulation : Algorithm, comparison with ACOPF and sensitivity,” IEEE Trans. Power Syst., vol. 22, no. 4, pp. 1475–1485, 2007.
[13] I. U. Nutkani, P. C. Loh, P. Wang, and F. Blaabjerg, “Cost-prioritized droop schemes for autonomous AC microgrids,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 1109–1119, 2015.
[14] F. Chen et al., “Cost-Based Droop Schemes for Economic Dispatch in Islanded Microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 63–74, 2017.
[15] P. Shamsi, H. Xie, and S. Member, “Economic Dispatch for an Agent-Based Community Microgrid,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2317–2324, 2016.
[16] J. M. Guerrero and P. C. Loh, “Advanced Control Architectures for Intelligent Microgrids — Part I : Decentralized and Hierarchical Control Aalborg Universitet Advanced Control Architectures for Intelligent MicroGrids,” IEEE Trans. Ind. Electron., vol. 60, no. April, pp. 1254–1262, 2013.
[17] A. G. Tsikalakis, S. Member, N. D. Hatziargyriou, S. Member, and A. Microgrids, “Centralized Control for Optimizing Microgrids Operation,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 241–248, 2008.
[18] H. Han, X. Hou, J. Yang, J. Wu, M. Su, and J. M. Guerrero, “Review of power-sharing control strategies for islanding operation of AC microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 200–215, 2016.
|